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This paper discusses critically observations of mixing processes across density 
interfaces in laboratory experiments and inferences that have been made and 
can be made from these observations. Fluxes of heat or salt and entrainment 
velocities have been found to depend on negative powers of an overall Richardson 
number Ri* based on the buoyancy jump across the interface, the depth of the 
homogeneous layer and the intensity of the turbulence near the source. When the 
Reynolds and PBclet numbers are large, the fluxes or entrainment velocities 
appear to be proportional to the minus one and minus three-halves powers of 
Ri* for flows with and without mean shear respectively, and this difference has 
caused speculation about the accuracy of the experimental data and about the 
reasons for the two laws if the difference is real. In the present discussion, we 
accept the accuracy of the two laws and attribute the higher entrainment rate for 
shear flows to the decrease of r.m.s. velocities near the interface with increasing 
Ri* in the case of zero shear. A plausible argument yields the unifying result that 
the entrainment rates in both cases are proportional to Ri-l, where Ri is a 
Richardson number based on the buoyancy jump and velocities and lengths 
characteristic of the turbulence near the interface. It is suggested that the Ri-% 
behaviour inferred by Turner is based on an erroneous interpretation of 
experimental data. 

In the course of the discussion, it is shown that the drag coefficient in flow of a 
stratified fluid over a rough surface is independent of the Richardson number 
(or density jump across the interface or inversion) and depends only on the ratio 
of the roughness length to the depth of the homogeneous layer. This has obvious 
implications for problems of parameterizing the momentum flux near the ground 
in the atmosphere. 

1. Introduction 
Geophysicists and engineers have a considerable interest in problems con- 

cerning the erosion and motion of interfaces between fluids of different densities 
and the related problem of heat or salt flux across these surfaces. Such interfaces 
occur frequently in the atmosphere and in oceans, lakes and reservoirs. An 
example of the practical importance of these studies is artificial destratification 
of reservoirs to improve water quality in the hypolimnion (stagnant region below 
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FIGURE 1. Mixing experiment of Rouse & Dodu (1985) and Turner (1968). In the figures of 
this paper the interface is shown as a discontinuity in density. Actually it is a thin layer with 
a thickness of 1 cm or so, independent of the Richardson number. 

the thermocline). One method involves the pumping of fluid from the hypo- 
limnion through a tube and discharging the water in a jet downward from the 
fsee surface. The heavy discharged water moves down to the interface and the 
mixing in the upper layer and the turbulence generated by the jet erode the 
interface, causing it to weaken, move downward and eventually disappear 
(Brush 1970). 

Geophysical implications of mixing across density interfaces are numerous. I n  
the oceans, for example, suddenly increased stress forces exerted by the wind at  
the water-air surface will cause the upper mixed layer to increase in depth a t  a 
rate dependent on the stress, the instantaneous depth of the layer, the density 
jump across the interface and, perhaps, other effects (Kato & Phillips 1969). In  
the atmosphere, inversions are common and the motion of these surfaces and 
heat,, momentum and moisture fluxes across them are of great importance t o  our 
understanding of atmospheric turbulence and its parameterization in numerical 
models. 

2. Experiments without shear 
A number of laboratory experiments have been designed to help give an under- 

standing of the problem. The first was by Rouse & Dodu (1955) and involved 
a vessel with two layers of liquid of different densities, as in figure 1. A grid of solid 
bars was oscillated verticallg with a small stroke a in the upper layer and observa- 
tions were made of the entrainment velocity u,, or the downward velocity of 
propagation of the interface. This experiment is characteristic of those without 
shear. Shear, of course, is common in natural circumstances and is a source of 
turbulent kinetic energy. 

Cromwell (1960) performed a similar experiment to simulate the pycnocline, 
but the first reliable datawere obtained by Turner (1968). Turner ran two different 
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experiments. One was as described above except that the stirring was in the lower 
layer; the other had stirring in both layers. In the first experiment, fluid was 
withdrawn from the stirred layer at  a rate adjusted to keep the interface at  the 
same distance from the grid, and the gradual fall of the air-water interface was 
ignored. The entrainment velocity was then defined by Au, = Q, where Q is the 
volume withdrawn per unit time and A is the cross-sectional area of the tank. 
In  the second experiment, both layers were turbulent and, with the same stirring 
action by the two grids, the interface stayed at the mid-level. 

Theoretical considerations of these experiments involve the concept of 
buoyancy, defined as b = (p  - po) g/po, where p is the density and po is a reference 
value. In  all experiments, the density difference was small and this justifies the 
use of the Boussinesq approximation (Boussinesq 1903; Spiegel & Veronis 1960). 
This means that b is the only quantity involving density or gravity entering the 
analysis. 

In  the one-grid experiment with the upper level mixed, if the interface is 
allowed to move downward at  speed ue (no fluid added or subtracted), the 
buoyancy flux q satisfies the equation 

aq/az = &/at, (1) 

where 6 is the mean buoyancy in the upper layer and z may be measured down- 
wards from the top of the upper layer. Since 6 varies very little with height? in the 
upper layer, the flux at  the interface is 

q = - Dd(Ab)/dt, ( 2 )  

where Ah is the buoyancy jump across the interface and we have put q = 0 at  
z = 0. Thus p = -d(DAb)/dt+u,Ab. (3) 

Mass conservation shows that DAb is constant, so that q = u, Ah. This may be used 
to define an entrainment velocity when both layers are agitated. In this case, if po 
is the average of the two densities, the buoyancy flux at  the interface is 

q = - +Dd(Ab)/dt 

and we may define the entrainment velocity to be 

There have been a number of recent experiments of a similar type, for example 
by Brush (1970). Equipment identical to that of Turner was constructed by 
Wolanski (1972)) and the one- and two-grid experiments were run with stratifica- 
tion caused by heat, salt, sugar and suspensions of sediments and minute silica 
spheres. Additional experiments have been run in Turner’s apparatus by Linden 
(1973)) Crapper (1973) and Crapper & Linden (1974) using heat and salt. 

t The variation of 6 with height results in a relative error of order ab /Ab ,  where ab is the 
increment in buoyancy across the ‘ homogeneous’ layer. This is observed to be very small 
whenever density interfaces exist. We give its order of magnitude in equation (37) for 
experiments with and without shear. 

20-2 
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An important result of the experiments by Turner (1968) may be expressed as 

u,/w = C[w2/(Ab)ln, (5) 

where w is the frequency of the oscillating grid and C is independent of w and Ab. 
A number of lengths were kept constant in the experiment, so that the dimen- 
sional quantity C may be a function of these. Turner found that, for larger values 
of Ab/02, the exponent n = 1 when stratification is related to temperature 
differences and n = $ when it is related to differences in salt content. Later 
investigations have confirmed these results and, very recently, Crapper & Linden 
(1 974) have shown rather convincingly that the difference in the values of n is due 
to the influence of the relatively large molecular conductivity in the heating 
experiments (the coefficient K is much smaller for salt). C. G. H. Rooth (Turner 
1973) in unpublished work has found a 8 dependence in heating experiments when 
larger turbulent velocities are generated, so that it appears well established that 
the $ dependence is appropriate for larger PBclet numbers Pe = u,l,/K, where u1 
and I ,  are velocity and length units. Crapper & Linden suggest a thrzshold value 
of Pe z 200 when u1 and 1, are characteristic of the turbulence near the interface. 
The dependence on the Reynolds number Re has not been established because of 
the rather small ranges of R e  in the experiments, but both Wolanski (1972), who 
varied Re by a factor of 3, and Crapper & Linden (1974) report very weak 
dependence, if any. We may, therefore, write for large Pe and Re and strong 
stability 

where C, is a function of a, D and a,, a2, ..., where a is the tot.al stroke of the 
oscillating grid and a,, a2, . . . , are lengths characteristic of the grid and its location. 
It is convenient to introduce a dimensionless quantity K,  by t’he definition 

and therefore 2 1 , / 2 ~ ~  = K,Ri*-$, X i *  = DAb/ui,  

where t ~ *  = wa. It is likely (see 5 7 )  that K ,  is independent of a/D when this 
ratio is small. 

3. Experiments with shear 
Several experiments have been constructed to introduce shearing currents into 

turbulent density-stratified systems in an effort to simulate atmospheric and 
oceanic phenomena. The first of these of direct relevance to our discussion was 
that of Kato & Phillips (1969). The apparatus was a large circular annular channel 
filled with salt water with an initially linear density gradient. A constant stress 
T = uz was applied by rotating a flat screen a t  the surface (figure 2 ) .  They found 

t~,,~~, = K,Ri”-l, (9) 

where Ri* is of the same form as in (8) and Ab is the buoyancy jump from the 
upper mixed layer to the quiescent region below. 
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FIGCRE 2 .  Idealized experiment of Hato & Phillips (1969). The initial buoyancy profile is 
linear. __ , profile at time t when the mixed layer has a depth D. 

It is important for later purposes to  present an analysis of the drag coefficient 
2ui /U2 ,  where U is the speed of the screen in the experiment of Kato & Phillips. 
They found that U / u ,  increased with time (or depth) with u* held fixed. At first 
glance one might expect this to be an influence of the stable density distribution 
in the fluid system, but on closer consideration it seems more reasonable to neglect 
Ab entirely and consider the flow and turbulence in the upper layer as turbulent 
flow due to  the motion of a rough plate a t  z = 0 with the interface a t  z = D serving 
only to reduce the mean velocity to zero a t  that level. This is supported by a 
description by Kato & Phillips: “The movement [of a line of hydrogen bubbles] 
indicated that the mean velocity varied most rapidly near the screen and near the 
entrainment interface, being almost constant in the central region, where the 
velocity was typically about half that of the screen.” The mean motion seems to 
have been very close to that in turbulent plane Couette flow (Robertson 1959) 
and a theory for the ratio U/u ,  may be obtained by use of the technique of 
Izakson (1937) and Millikan (1938). We assume for the mean velocity near the 
screen (in a co-ordinate system moving with the screen) 

(10) 
- .I.* = f ( Z I Z o ) ,  

where zo is the roughness length, and, in the interior, the velocity-defect law 
(Monin & Yaglom 1971, p. 298) 

(*U-E)/u* = g(z/D).  

Writing U/2u,  = m(x,/D) and matching the two solutions near z = zo in the usual 
wav, we find 

where K is von K&rm&n’s constant and A is another constant. Kato & Phillips 
give data on U ( t )  for some of their experiments but, although the paper contains 
an empirical equation for D(t) ,  it does not agree with the data over the whole time 
period of the experiment. However, one case permits a comparison and this is 
shown in figure 3, in which the theoretical curve is 

U / u ,  = ( 2 / ~ )  In D(t)  + 5.78, (12) 
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FIGURE 3. The solid curve is based on the theory of (11),  in which D(t)  is given by curve 11, 
figure 5 of Kato & Phillips (1969), with 7 = 2.12. The data points are from figure 3 of Kato 
& Phillips: 0 ,  7 = 2.75; 0, 7 = 1.49. All oxperirnents have the same buoyancy gradient. 
The stresses are in ern2/s2. 

where D is expressed in centimetres. The single constant was chosen to give 
U = 27-25 cm/s a t  t = 200 s. The agreement is remarkable and leaves little doubt? 
that U / u ,  is independent of the Richardson number, which varied by a factor of 
I00 in the course of the experiments. In subsequent discussions, we suppress any 

dependence of quantities on zo/D. 
The argument may be reasonably extend ed to flow of air over the cool surface 

of the earth. An inversion will be present a t  some height and the momentum stress 
will be a function only of the depth, the roughness length and the wind speed at  
the height of the inversion. This has obvious usefulness in problems of para- 
meterizing the momentum flux near the ground in numerical atmospheric models. 

An experiment by Moore & Long (1971) was constructed to permit a steady 
state. I n  a large channel shaped like a race track, fluid was injected from nearly 
horizontal jets a t  the bottom (salt water) and top (fresh water) in opposite 
directions to obtain a shearing current (figure 4). Zero mean vertical velocities 
were achieved by withdrawing equal volumes of fluid through numerous holes in 
the bottom and top. The system permitted measurement of the buoyancy flux q 
in a steady-state situation. At larger values of the density difference, two homo- 
geneous layers existed a t  the top and bottom with an interface in the middle. The 
experiment yielded 

q = fi ,(A431D, (13) 

It also leaves littIe doubt. that a recent suggestion to the contrary by the author is 
wrong (Long 1973). 
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FIGURE 5 .  Mixing experiment of Wu (1973). The air blowing over the free surface induces 
the turbulence and the mean velocities in the upper layer as indicated by the small arrows. 
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where Au  is the difference between the mean velocities measured near the top and 
bottom. If we define the entrainment velocity by u,Ab = q, equation (13) yields 
the same result as that  in Kato & Phillips [equation (9)] if, as seems very likely 
from the discussion of the Kato & Phillips experiment, Au/u, is independent of 
the Richardson number, where u i  is the constant momentum flux in the tank. 
Moore & Long also ran unsteady experiments similar to those of Kato & Phillips 
with a fluid with an initially linear buoyancy gradient and subject to  the system 
of jets and withdrawals a t  the bottom only. They obtained a result equivalent 

Finally, in a recent experiment by Wu (1973), the source of energy and shear 
was a current of air blowing over a vessel containing a two-fluid system. The 
apparatus and the shear produced are shown in figure 5. Wu also obtained (9) 
although his coefficient of proportionality was much smaller. 

to (9) .  

Interface 

\ Buoyancy 
profile 

FIGURE 4. Idealized experiment of Moore & Long (1971). In order to balance the inflow 
through the jets, an equal volume of fluid was extracted from numerous holes on the top and 
bottom. 
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4. Comparison of experiments with and without shear 
The different dependence on Ri* for the two experiments has been the source of 

perplexity (Turner 1973; Linden 1973) because the mixing processes appear to be 
very similar. Indeed, Linden (1973) has stated that the Kato & Phillips data are 
also consistent with a - 3 behaviour, although support for this statement seems 
lacking. In the rest of this paper, we attempt to contribute to a unified under- 
standing of the two results. 

Turner (1973) has made the valuable suggestion that the erosion of the interface 
should depend on the properties of the turbulence near the interface, in particular 
on the r.m.s. velocity u, and the integral length scale 1, near the interface. Thus 
he proposed the form 

u,/u, = f (Ri), Ri = l,Ab/u:, (14) 

where possible dependence on other quantities is suppressed and it is assumed 
that Pe and Re are large. In  an attempt to determine the dependence on Y' LZ f rom 
his density-interface experiments, in which u1 and 1, were not measured, Turner 
used unpublished experimental data by Thompson (see Turner 1973; Crapper & 
Linden 1974 for a description). Thompson used Turner's apparatus with a ?&orno- 
geneousJluid and one grid. He measuredu and 1 at many levels, where u is the r.m.s. 
velocity and I is the integral length scale at  a depth z. As reported by Crapper & 
Linden, Thompson found that 1 increased linearly with distance from the grid but 
mas independent of w .  He also found that u decreased with z but at a given z was 
proportional to 0. Although Thompson's experiment had no density variation, 
Turner (1973), Thorpe (1973) and Crapper & Linden (1974) have assumed that 
his results arc directly applicable to the mixing experiments. Thus, at  z = D, they 
used 

so that (8) could be written as 

Turner thus obtained the same exponent for the dependences on Ri*, defined in 
(8)) and on Ri, defined in (14). Notice that the proportionality of u, and w follows 
from dimensional analysis but only when the Jluid is homogeneous. 

We may also obtain a dependence on Ri for the shearing experiments. With 
shear, we have 

aria2 = aulat, (18) 

where is the mean horizontal velocity a t  a depth z .  In the steady-state experi- 
ments of Moore & Long (1971), & / a x  = 0 and therefore r is constant with height. 
Since r = - u'w', and since the correlation coefficient is very likely to be of order 
one in the homogeneous layers, it follows that u* = r6 is proportional to ZL,. If we 
use 1, N D, we obtain 

- 
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for the Moore & Long experiment. In  the experiment of Kato & Phillips, we may 
use (18) to obtain the increment in T over the depth D :  

Ar/T - UDITu;, (20) 

where T is the time period for a change of depth of order D, so that T - DIu,. 
Therefore, 

(21) 
AT U u, 

7- u*u* 
- _ _  Ri*-l. 

This shows that the stress varies very little over the depth, so that ux - ul, and 
(19) again holds. 

Thus two different entrainment velocities are indicated in the two cases even 
when the characteristics of the eroding eddies are the same, and this is more 
perplexing than the difference in the exponent of Ri*. The subsequent discussion 
of this paper questions the applicability of Thompson's experiment, in particular 
(15)) to an experiment with a density interface and suggests that (1  7 )  is inc0rrect.t 
The difficulty is indicated by a simple analysis based on the assumption that (19) 
is correct with or without shear. If we accept (8) for the case without shear and 
use I, - D, we obtain 

u J w a  = K ,  Ri*-* (22) 

instead of ulcc wa as was inferred from Thompson's experiments. Thus, if the 
assumptions are correct, there is a very weak dependence on the Richardson 
number which could not, of course, have been revealed by Thompson's experi- 
ments. Such a weak dependence is, nevertheless, capable of accounting for the 
difference in the power laws. 

5. Energy arguments 
The dependence of u,Iti* on Ri* in experiments without shear, as indicated in 

( 2 2 ) )  may also be obtained by a plausible argument based on energy considera- 
tions. When there is shear, experiment indicates that 

(23) 

Let us now evaluate q in the homogeneous layer near the interface. We get 
q - ulb l ,  where b, is the r.m.s. buoyancy fluctuation, and we make the plausible 
assumption that the correlation is of order one. Thus 

q - u:/D - u ~ / D .  

u?fb,D N 1,  (24) 

so that the kinetic energy T' - u? and available potential energy V' = &b,l - b, D 
(Long 1970) are of the same order.$ This is perhaps surprising but, if true in the 
shearing experiments, it should also be true when shear is absent. Assuming 

'i Linden (1973) has attempted to derive the Ri-4 law by order-of-magnitude arguments. 
If we accept the conclusions of the present paper, Linden's argument must also be incorrect. 

$ We mean that the two energies are proportional. The constant of proportionality is very 
small, as we see in § 6. 
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FIGURE 6. Non-dimensional ratio of the buoyancy difference across a ' homogeneous' layer 
and the buoyancy jump across the interface. The data are from Wolanski (1972). 

this, since q N ulbl N u,Ab in this case, we havc 

U,/U* N u~, /Du,  Ab - u3,/(DAb)g, ( 2 5 )  

or tbl/u* N Ri"-i ( 2 6 )  

as be€ore. This 'derivation' is not independent of the arguments leading to  ( 2 2 )  
because we have again assumed the behaviour in (8) and (9), and the Ri*-l law at 
least is controversial (Linden 1973). It is possible, however, to offer independent 
evidence in favour of the relation (24), or T' N V ' ,  and thus to improve the 
argument. As we discuss in $ 6 ,  other experimental and theoretical findings 
indicate that the flux Richardson number q/ri& tends to a constant when there is 
shear and strong stability, and this behaviour implies (24). Equation (26) then 
follows from the less controversial Ri*-t law in experiments without shear. 

The decrease in r.m.s. velocity with an increase in Richardson number when 
density variations are present as in (26) may be caused by the weak density 
gradient in the layers that we have called 'homogeneous'. In  a layer as a whole, 
the slight density variation still has dynamic importance, as is indicated by the 
proportionality of kinetic energy and available potential energy. Such arguments 
havc been advanced earlier by the author (Long 1972, 1973). 
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An additional relationship may be obtained for the experiments without shear. 
If we assume that the small buoyancy difference nb across the ‘homogeneous’ 
layer is of the order of the r.m.s. buoyancy fluctuation (implying an eddy length 
scale of order D), (24) and (26) lead to 

This quantity was measured by Wolanski (1972) for his salt experiments (figure 6). 
There is good agreement with (27), especially at  higher values of Ri*, although 
the scatter is probably too great to distinguish between the Ri-1 law and the 
Ri-% law. 

The energy argument may be amplified. Rouse & Dodu (1955) and others 
(Kato & Phillips 1969; Turner 1973; Wu 1973) have suggested that the Ri*-l law 
implies that the change in potential energy is proportional to the energy supply 
by the external source. On this basis, the Ri*-% law would not conform to any 
simple energy considerations. The above discussion indicates that the last con- 
clusion is not correctly drawn. The energy equation for experiments with or 
without shear may be written as 

(28) 
a- a 
-(Jd2) = -- [ ~ ’ ( J c ’ ~ + p ’ / p ~ j ] + ~ U , + q - c ,  at az 

where p’ is the turbulent pressure, c’ is the turbulent speed, e is the dissipation 
function and cg = 0 in experiments without shear. In  the shearing experiments, 
the velocity difference is proportional to 78, and the two energy-source terms, as 
well as the dissipation, are of order u;/D or u;/Zl near the interface. If q N u, Ab 
is also of this order, we obtain iielul N Ri-I as in (19). When shear is absent, the 
single source term is the first term on the right-hand side of (28) and is also of order 
u!/Zl. The Ri-1 law again implies equality of all sink and source terms. The correct 
int,erpretation of experimental results thus seems to be that the turbulence has 
a character that causes potential energy to increase at  a rate proportional to the 
rate at  which kinetic energy is supplied to the region of the interface and not 
necessarily proportional to the rate of generation of kinetic energy a t  the external 
source. 

6. Implications of the energy arguments 
We have reached the conclusion that in all experiments in which there is strong 

stability, so that turbulence in part of the region is intermittent, all terms in the 
energy equation are proportional to each other. When there is shear we may 
express this, in part, by saying that the flux Richardson number Rif assumes a 
constant (critical) value Rift. This may also be characteristic of geophysical fluid 
systems; for example, Kullenberg (1 97 1) has assumed this behaviour to obtain 
a theoretical expression for the eddy coefficient of heat diffusion that agrees very 
well with data in the sea. Rift may be computed from the experimental data of 
Kato & Phillips (1 969). If we use the mean buoyancy flux ?j = QueAb in the mixed 
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layer, the nearly constant momentum flux T in the mixed layer, the velocity 
difference across the layer and the empirical result u,/u* = 2*5Ri*-I, we obtain 

For the higher velocities U/u+ varies very slowly and we adopt the value 20 for 
this ratio as indicated by the data of Kato & Phillips. This yields Ri,, g 0.06, 
which is close to the value 0.05 adopted by Kullenberg on the basis of his observa- 
tions in the sea. These low values of Rift may be contrasted with estimates three 
times as big by Ellison and others (Turner 1973), and Kullenberg finds that data 
of Ellison & Turner (1960) and Bowden (1960) are not consistent with the lower 
values. 

When the overall Richardson number is of order one or less, experiments 
indicate that the fluid is fully turbulent (Arya & Plate 1969; Moore & Long 1971). 
The observations of Arya & Plate show that the flux Richardson number 
increases as the Richardson number increases but with a tendency to level off for 
Ri > 0.1 at a value Ri, = 0.06. This is in excellent agreement with the values 
cited above, but this may be because U/u* happens to be similar in the experi- 
ments of Kato & Phillips and Arya & Plate and in the measurements of 
Kullenberg . 

There is a difficulty with the concept of a critical flux Richardsonnumber above 
which turbulence is supposed to die out. In  fact, as we have seen, turbulence 
exists at  infinite values of &if in experiments without shear. The reason, of 
course, is that there is another source of kinetic energy, namely the energy flux 
divergence term of (28). The apparent success of the flux Richardson number 
concept probably arises from the tendency €or all energy terms to be proportional 
to u3/1, and this suggests the use of the quantity 

Ri,* = q/(u3/1) 

instead of&,. Since y N ub, we find that Rif* is of the order of the ratio of available 
potential energy to turbulent kinetic energy. We have already argued that this 
has an upper limit whether shear is present or not, so that an upper limit Riz 
exists in both cases and indeed, from physical considerations, may well have the 
same value in experiments with or without shear and in natural circumstances 
in the atmosphere and oceans. We may estimate RiZ as 

RiZ g 0-35V'/T', 

where V' is the available potential energy ibl and T' is the kinetic energy. We 
have taken the correlation coefficient between w' and b' as 0.3, w g 0 . 6 ~  and 
v 2 0 . 7 5 ~ .  In  the case of shear we estimate Ri, from the experiment of Kato & 
Phillips: 

where we have taken D g 141, in accordance with measurements in a pipe 
(Schlichting 1955), u$ 2 0 . 3 ~ ~  and T' 2 us. Thus V'/T' 2 0.020 and Rig 2 
If this critical value of Ri; is universal, it  would be a more useful concept than 
Ri,, which, according to (29), varies with the drag coefficient. 
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The concept of the Monin-Oboukhov length L = r % / q K  (Monin & Yaglom 1971, 
p. 427) may be re-examined in the light of our discussion of experiments with 
density interfaces. I n  the mixed layer r - u2 and q N ub, so that 

L - U2/b .  (31)  

Since u2 - bl in the layer, 1 N L, that is, L is proportional to the eddy size. We 
also found 1 - D ,  so that the mixed layer has a depth proportional to the Monin- 
ObouIchov length. We may find the constant of proportionality from the experi- 
ment of Kato & Phillips (1969). If we use the average flux of buoyancy in the 
mixed layer a, we have Rife = qD/rU. It follows from (29) that 

where cd is the drag coefficient 2u$/U2. Alternat'ively we may compute L from the 
definition using the estimates for Rig. We get L/1 r 30 and again LID r 2. 
Kitaigorodskii (1960) found LID r 1.2 for the mixed layer in the ocean and 
recently Sundaram (1973) has computed LID 

Finally we remark t,hat in both of the basic experiments considered in this 
paper q - ueAb - u,ab, so that 

4 for a lake. 

The existence of turbulence implies that V' < T',  so that the experimental result 
ue/ul - Ri-1 in both experiments shows that ue/ul is a maximum consistent with 
the maintenance of the turbulence. 

7. Discussion of an idealized experiment 
It is instructive to discuss an idealized experiment, which has limiting 

behaviours close to the two basic experiments. This is a two-fluid system (figure 7) 
with a plate or screen oscillating back and forth in its plane. The densities are 
nearly constant in each layer and the upper layer presumably deepens with time. 
The oscillation is produced by applying to the plate a stress r = ui which is 
constant in magnitude over each half-cycle. The amplitude of the oscillation is 
a and may be large or small. If the PBclet and Reynolds numbers are large, it 
seems reasonable to assume that 

(34) 

where DAb in Ri" is constant from considerations of mass continuity. If we use 
the classical case of flow over a flat plate as a guide (Monin & Yaglom 1971, 
p. 3 1 l ) ,  it seems likely that f is independent of viscosity in the case of a smooth 
plate and of the nature of the roughness in the case of a rough plate. 

If we let a/D -+ 00, uJu* will become independent of a/D and we shall obtain 
an experiment similar to that of Kato & Phillips (1969). Their results and the 
similar experiments by Moore & Long (1971) and by Wu (1973) indicate that 

u,Iu* = f (Ri", .ID), 

UJu* = K ,  Ri*-'. (35) 
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FIGURE 7. Idealized mixing experiment with turbulence produced 

by a plate oscillating in its own plane. 

On the other hand, if we let u/D -+ 0, we should again find independence of 
a/D and, since this is similar to  Turner’s experiment, we may write 

u,,u* = K,Ri*-Z. (36) 

We are again led to  two different laws for the entrainment velocity, but this 
simple experiment indicates that  this should not be considered paradoxical since 
the two limits a/D -+ 0 and a/D -+ co are very different. Notice that, in a given 
experiment with fixed a of moderate size, the erosion is a t  first rapid as in (35 ) ,  
slowing down gradually and tending to  the lower rate in (36) as D increases. 

A variation of this idealized experiment is useful to  apply the ideas of 5 5 to 
gain an appreciation of the inevitability of the appearance of homogeneous layers. 
I n  this case, there is fluid above and below the oscillating plate, which now is 
porous to permit a buoyancy flux through it. The initial distribution has uniform 
buoyancies -QAb above and + gAb below the plate. At the beginning of the 
experiment, eddies of small dimensions h N uyc t form near the plate. The Richard- 
son number Ri = hAblu2, is small, so that  buoyancy is unimportant dynamically 
and the erosion proceeds rapidly. Ri is increasing with time, however, and, when 
Ri is of order one, V’ N b,h N T’ N uf. Since b, N a, we have &/Ab N Ri-1 N I ,  
so that the density difference across the mixing layer is not yet small. As time goes 
on Ri eventually becomes large. However, V‘ N T‘, so that with an increase in 
depth b, or ab must decrease and the homogeneous layer forms. The behaviour, 
as we have seen, is 

&/Ab N Ri*-l or Ri*-$ (37) 

depending on the relative amplitude of the oscillation. 

8. Summary 
This discussion attempts to  give a coherent interpretation of the experimental 

measurements of entrainment rates u, across density interfaces. If we define a 
Richardson number Ri* based on the density jump across the interface, the 
friction velocity or stirring rate imposed externally and the depth of the homo- 
geneous layer, the experiments indicate different variations of u, with Ri * 
depending on the presence or absence of shear. We find this to be reasonable 



Influence of shear on mixing across density interfaces 319 

because the erosion should depend on the characteristics of the turbulence near 
the interface and the intensity of the turbulence near the interface decreases with 
Ri* when shear is absent. Finally, it is shown that the available potential energy 
and the kinetic energy of the turbulence are of the same order in the shearing 
experiments in the homogeneous layer. With the mild assumption that this is 
also true in the experiments without shear, it follows that entrainment velocities 
are proportional to Ri-I in both cases, where Ri is the Richardson number 
expressed in terms of the buoyancy jump and velocities and lengths characteristic 
of the turbulence near the interface. This discussion indicates a need for observa- 
tions of r.m.s. velocities near the interface to compare with the prediction of this 
paper that u1 is proportional to w2 rather than to w as measured by Thompson. 

The research in this paper was supported by the National Science Pounda- 
tion, Grant 35612. 
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